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Kinetic Theory of Granular Shear Flow: Constitutive 
Relations for the Hard-Disk Model 
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A kinetic theory for the constitutive rheological relations of rapid granular shear 
flow of hard circular disks, characterized by a coefficient of restitution e and a 
surface roughness coefficient fl, is formulated. From a set of general constitutive 
equations for single-particle dynamical variables, the approximate expressions 
for the limit of small and large dimensionless dissipative parameter Rt are 
obtained. Here Rt is defined as the ratio a,//(v), where v is the fluctuation of 
translational velocity from the mean flow velocity, a is the diameter of a disk, 
and ? is the shear rate. At small R~ the theoretical predictions can be compared 
with "exact" computer simulation results of granular dynamics that are also 
reported. The agreement between theory and simulation is better than expected; 
the present theory is accurate up to high packing density in this region of R t. 
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1. I N T R O D U C T I O N  

A granule  is a small ,  hard ,  compac t ,  sol id par t ic le  that  is an aggregate  of 
molecules  via s t rong in te rmolecu la r  forces. A g ranu la r  ma te r i a l  is a collec- 
t ion of a large n u m b e r  of discrete granules.  W h e n  the local  stress is small,  
a g ranu la r  ma te r i a l  behaves  like an  elast ic  sol id so tha t  it  m a y  suppor t  an 
external  load.  The m a x i m u m  load  is l imited insofar  as the fr ic t ional  bonds  
be tween g ranu la r  par t ic les  can suppor t  it. W h e n  the magni tudes  of local  
stresses exceed this limit,  the g ranu la r  par t ic les  can begin to flow. The 
ini t ial  flow involves many-pa r t i c l e  b locks  moving  together  relat ive to one 
ano the r  a long shear  bands .  If the m o t i o n  occurs  slowly, the part icles  will 

i Physics Department, Kyonggi University, Suwon, 440-760, Korea. 
2 Department of Chemical Engineering, University of Bradford, Bradford BD7 1DP, West 

Yorkshire, U.K. 

143 

S22/71/1-2-10 0022-4715/93/0400-0143507.00/0 �9 1993 Plenum Publishing Corporation 



144 K imandWoodcock  

stay in contact and interact frictionally in neighboring blocks. This is the 
quasistatic regime of granular flow. 

If the magnitudes of local stresses are sufficiently large so that each 
granular particle can move freely and independently of each other, instead 
of aggregate blocks, this flow regime is called grain-inertia. In the present 
paper we report a kinetic theory approach to this rapid flow regime, 
initially in two dimensions. Previous theoretical and simulation studies of 
rapid granular flow are described in the review articles of Savage (1) and 
Campbell. (2) 

In this rapid-flow regime, the velocity v of each particle can be 
decomposed into a sum of the mean velocity u of the bulk material and a 
random component V to describe the motion of particles relative to the 
mean. The translational "granular temperature" T, may be defined by (1' 2) 

2T,=  (V 2) (1) 

where V = v -  u and is the instantaneous deviation from the mean velocity 
u =  (v) .  The angular brackets denote the usual ensemble average of 
particle space and time. 

To describe theoretically the rapid-flow behavior of an idealized 
frictional hard-sphere model granular material, it is natural to exploit 
the similarity to the problem of transport between the molecules of a gas 
and the granular particles. Since collisions between granular particles are 
dissipative through inelasticity and surface friction, standard kinetic theory 
for dense gases must be extended to accommodate this aspect of the physics. 
The earliest such theoretical approach was applied to a dense system of 
identical, smooth, slightly inelastic spheres. (3) This approach has been 
extended to rough, slightly inelastic spheres (4) by taking into consideration 
the rotational spin degrees of freedom of granular particles. 

In the present approach, we begin in two dimensions, for two reasons. 
First, the physics of rotational motion and the effects of interparticle fric- 
tion are conceptually easier to understand and more easily treated with less 
damage to the physical properties by the approximations involved. Second, 
the theoretical predictions can be tested in computer simulations of a large 
number of disks in a plane more economically, and with more insight, than 
in 3D. (5' 6) There is no evidence from these previous simulations to suggest 
any significantly new physical concept between two- and three-dimensional 
rapid granular flow. 

To treat collisions between granular particles, it is assumed that they 
are binary and instantaneous and that the velocities of a pair of colliding 
particles are distributed at random, and that there is no correlation 
between the velocity and the coordinate of a particle, i.e., the molecular 
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chaos assumption. (7~ The single-particle velocity distribution function, in a 
simple shearing flow, is assumed to be a local Maxwellian distribution, 
involving two granular temperatures Tt and Tr: Tt measures the mean 
kinetic energy of fluctuations in the translational velocity, and Tr measures 
the mean kinetic energy of fluctuations in the spin angular velocity. The 
pair correlation function at contact should reflect the anisotropy induced in 
the system by the shear flow. With these assumptions accurate constitutive 
relations can be derived for strongly dissipative systems besides nearly 
conserved systems akin to molecular gas theory models. 

In the next section, transport equations for mass, linear momentum, 
spin angular momentum, translational kinetic energy, and spin angular 
kinetic energy for simple shear flow are derived. The constitutive relations 
between stresses and the rate of shear strain are subsequently derived 
for both the weakly and strongly dissipative regimes. In Section 3 new 
computer simulation results are presented for granular dynamics of the 
idealized frictional hard-disk model and compared with the kinetic theory 
predictions. 

2. KINETIC THEORY 

Let us consider a granular system of identical circular rigid disks, each 
having a mass m, a diameter a, and a moment of inertia I about an axis 
through the center of mass perpendicular to the disk itself, moving in a 
plane y-z under a simple shear flow with a shear rate 7 = ~uy/Oz, where uy 
is a local flow velocity along the y direction. The disks also spin about axes 
perpendicular to the plane through their centers, so o = co2, where 2 is a 
unit vector along the x axis. Let us denote ~U(r, t) as a single-particle 
dynamical variable at position r and time t. The ensemble average of 
~(r, t) is written as 

1 f dv d o  gt(r, t) f(l)(r, v, r t) (2) (gt(r, t ) )  =n(r ,  t) 

where n(r, t) = j" dv d o  f(1)(r, v, co; t), the number density distribution func- 
tion at position r and time t, and the single-particle distribution function 
f(1)(r, v, o;  t) is defined such that f(1)(r, v, o;  t) 8v 3 o  is the number of 
particles per unit volume around r with translational velocities within the 
range v and v + 6 v and with spin angular velocities within the range o and 
o + 3o.  The balance equation for the change of (n~U) is 

0 
at ( n ~ )  = n ( D ~ ) - -  V. (nv~P(r, t ) ) - V - O  +X (3) 
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where 

(4) 

and fb is the body force per unit mass. The first term is due to the fact that 
the quantity for each particle changes intrinsically. The second term is due 
to the net flux of particles which enter the volume element in time dt. The 
third involves a collisional transfer term 

~ 
O =  - 2- ~2-~>0 d/~ dvl dr2 d~o~ d~2(~t] -- ~ffl)(V12" ]~)/~ 

1 ~ 1 ) x f  (2) r -  ~ ak, v~, c01; r + ~ a/~, v2, 02; t (5) 

and the last term involves a collisional source-like effect 

)~=20- f,,2.~> o d]~ du 1 dv 2 do~ do2( 5u~ + T'I - T2 - T~ )(u ]~) 

(, , ) x f (2) r - ~  G~, v~, ~1 ;r +~ o-L u ~2;t  (6) 

where v12 = v ~ -  v2 and /~ is a unit vector along the line of centers from 
particle 1 to particle 2 at contact. 

The integration should be done over the collision condition v~2"/~ > 0. 
And the two-particle distribution function f(2~(r~, v l , 0~ ; r2 ,  va,r t) is 
defined such that 

f~2)(rl, Vl, 0~ ; r2, v2, 0~2; t) 6r~ 6r26vl  6v260~1 60~2 

is the probability of finding a pair of particles 1 and 2 in the volume 
element 6r l ,  6r2 centered on the points r 1, r2 and having translational 
velocities within the ranges vl and v l+6Vl ,  v2 and v2+6vz  and spin 
angular velocities within the ranges o~ and o~lq-6o~t, and ~2 and 
o~2 + 6 ~2, respectively. Now if we take a single-particle property ~ as mass 
m, linear momentum m v, spin angular momentum Io~, translational kinetic 

lmu ~I0~, respectively, we get energy ~ , and spin rotational kinetic energy 1 2 
a set of transport equations describing the balance laws of each dynamical 
variable: 

@ 
- - =  - p V . u  (7) 
dt 
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dll 
p ~ - ~ = p f b - - V "  P (8) 

nI  dr~176 = - V"  N + Z(IO~) (9) 
dt 

dTt 
p - - ~ - =  P : V u - V "  Q , -  z, (lO) 

1 dT~ 
- -  - - N:Vtoo - V- Q,  - co o - Z(Ico) - Zr (11 ) 

2 p dt 

where p = m n ,  the bulk mass density; o0 = ( o ) ,  the mean spin angular 
velocity; and �89 = �89 the spin angular fluctuation kinetic energy, 
where W = ~ - ~0. 

The pressure tensor P, the spin angular momentum N, the transla- 
tional energy flux Q ,  and the spin rotational energy flux Qr may be each 
divided into two parts, a kinetic part  and a configurational part, denoted 
by subscripts k and c, respectively. 

P k = p < v v >  (12) 

Pc= O(mV) (13) 

Nk = n I ( V W )  (14) 

N C = O(IW) (15) 

Q,k = �89 (16) 

Q,c = O(�89 2 ) (17) 

Qrk = �89 VW2 ) (18) 

Qrc = O(�89 IW2) (19) 

Furthermore,  the rate of translational kinetic energy interchange per 
unit volume is defined as 

Z, = - Z(�89 mV2) (20) 

and the rate of spin rotational kinetic energy interchange per unit volume 
a s  

1 2 Zr = - Z ( ~ I W  ) (21) 

In the present case, during a collision between granular particles, 
kinetic energies may be dissipated through inelasticity and also through 
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surface roughness and an exchange between translational and spin 
rotational kinetic energy may occur through surface roughness. Due to 
imperfect frictional slip there is, in fact, an incomplete equipartition of the 
translational and spin rotational kinetic energies so that there exist two 
kinds of granular temperatures T t and Tr. 

We now approximate the single-particle distribution function under 
simple shear flow by a local Maxwellian of the f o r m  involving two 
temperatures Tt and Tr, 

f~  v, 0); t )=  n(r, t) ( ( v - u ) 2 )  
(2zcTr)(2~mTr/i)l/2 exp 2Tt / 

( I(0) -- 0)o)2) 
• 

exp ~ 2mTr J (22) 

with u = u(r, t ) =  u(z))), where p is the unit vector along the y axis. 
Next, assuming instantaneous binary collision and the molecular 

chaos assumption, we can approximate the two-particle distribution 
function at contact simply by 

f~2)(r - la/~, vl, 0) 1 ; r + la/~, v2, 0)2; t) 

~_ g(r -- la/~, r + �89 t) f(X)(r - la/~, u ; t ) . f~  + lak, v2, 0)2; t) 

(23) 

If we integrate Eq. (23) with respect to translational velocities vl, u 
and spin angular velocities 0)1, 0)2, we get, assuming the system to be 
homogeneous and steady, 

f dv 1 dv2 do1 do2 f(2)(r - �89163 vl, 11) 1 ; r ~- l(Tk, u  ~ t) : neg(a[c; v) 

(24) 

Furthermore, we also get, in equilibrium at contact, 

2fv dvmdv2dold0)2f(2~(r-�89 Vl,0)l;r+�89 v2, m2; t) 
12./~>0 

= n2go(a; v) (25) 

where go(a, v) is the equilibrium radial distribution function at contact and 
v is a volume fraction. 
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If we combine Eqs. (22) (25), we get a first-order approximation to 
the anisotropic radial distribution at contact, 

g r--~ak, r+~Gk;t =g(Gs 

- (2/n 2) dr1 dv2 dr d ~  2 go(a; v) f  ~1) r - ~  a[c, v, r t 
12-/~ >- 0 

( '  ) x f  ~ r + ~  G/~, v, r t 

=g0(a,  v)erfc (/~" [ u ( r - � 8 9  + 2 ( T , )  m �89 

= go(a, v) erfc { - [ ~ l  R, sin 20 } (26) 

where erfc(z) is the complementary error function defined by 

2 f ~ erfc(z) = 1 - erf(z) = - ~  _. dt exp( - t 2) (27) 

and the dimensionless parameter R, is defined by 

R~ = oT/~V 2 )1/2 (28) 

and 0 is defined as the angle between the y axis and/~. 
Now we should consider a collisional model between two rough, 

inelastic circular identical hard particles 1 and 2, each having a diameter a, 
and having translational velocities Vl and v2, and spin angular velocities r 
and r 2, respectively. The total relative velocity at the contact point just 
prior to the collision is 

g12=v12-  � 8 9  (29) 

where ~ = o ~ ;  +co 2. During a collision between granular particles the 
components of g12 are changed such that 

/~" g't2 = - e(/~. g12) (30) 

x g'~2 = - ~ ( ~  x g~2) (31 )  
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where the primed quantities denote values after the collision. In fact, the 
coefficient of restitution e and the coefficient of surface roughness /3 are 
defined by Eqs. (30) and (31). 

Using Eqs. (29)-(31), we get the relationships between the pre- and 
postcollisional velocities, 

V~ - -  V 1 = - -  7 2 u  - -  ( 71  - -  7 2 )  s V12 ) n t-/ '12�89 • n 

and 

where 

vl-v = 

, m o -  

O 1  - r176 = - 72 ~ -  (k x u  - -  72K-10 

(32) 

(33) 

(34) 

c0~-~2 = o '1 -~1  (35) 

l + e  
71= 2 

l + f l  K 
r/2- 2 I + K  

and K is the radius of gyration of a disk along the axis perpendicular to 
the y-z plane, 

41 
K ~ _ , m  

m o  -2 

The change of translational kinetic energy during a collision is expressed as 

A(TKE) = �89 [(v]) 2 + (v~) 2 - v~ - v22 ] 

= - 72(1 -- 72)mv22 - -  [ - (71  - 7 2 ) (  1 - -  71  - -  7 2 ) 3  m(/~" V12) 2 

+72(1- 272)�89 +72K-1I[O2-(k.O) 2] (36) 

and the change of spin angular kinetic energy during a collision is 

1 , 2 A(RKE)=5I[{oa)  + (o~)2 -o~-e0~]  

{() , m 72(/~xv12)2+ ma - 1  (/~• 

I / / 7 2  1) ~. ~ - ~ -  0 2 } (37) 
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Note that no dissipation is involved to damp the random motions when 
e = 0 or 1 and/~ = -1 ,  in which cases A(TKE)= A(RKE)= 0 identically, 
irrespective of its initial states. 

From Eqs. (5), (13), (22), (23), and (32), we can calculate the 
configurational pressure tensor, 

P~. = O(mV) 

E 1 j 
12. ~>0 m - n 2 v 1 2  - (~1 - n 2 ) / ~ ( k "  v12) + n2 g ~/~ x n 

• k(v12" ]~)g(cr]~; v)f(') (r - ~ t7s Vl, Ol) f(') (r + ~ ~r]~, re, o2) 

x d/~ dvl dv 2 d o  1 do2 

= ~-~ mnZgo Tt f ~ d0erfc - - - s in202x ~ ( 2r@/2 tl2 R~( 2 sinZ O -1)ft[c 

x I~exp ( - 8 1 2  220)  1 t/rC'~ 1/2 ( 2 R,~ sin 20)] R, sin sin 20 erfc \ 

+ ~ / ~ / ~  & sin 0 exp R~ sin 220 + ~ R, sin 220 + 1 
,/2 

x erfc ( - - ~ R '  sin 20)} (38) 

where r~ is a unit vector normal to/~. 
From Eqs. (6), (22), (23), and (34), we can also calculate 

Z(Io)=~-~ ^ I(011 +01-o1--02)(s g(a/~; v) 
d.. w VI2 - ]C :> 0 

1 (r+ 1 xf(1) (r--~ ~/~, Vm, o l ) f  (') ~rtc, v2,02) d[cdv~dv2doldo 2 

1 2 2 

= - 2 ~ r/2ma n go(a; v) 

xf~dO(-~r~sin20+aO)o)erfc( - R'_ sin 20) 2`/2 

• ~exp - g R ,  sin 220 + R, sin20erfc - - -  R, 20)1 2 `/2 sin 

(39) 
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0" 2 1/2 2~r R, sin 20) =-2mng~ T t (~ )  fo dOerfc ( 2x/~ 

1 20) x I~ exp ( - g R 2  sin2 

+ ~ )  R~sin20erfc 2,,f2 R, sin20 

xL~2tl2(Rtsin40+l)--2t h - 1  --Rtsin20x/-~t 

+ q2 ( ~ -  1 ) ( ~ +  2 K@t) ] (41) 

The dimensionless parameter R,, already defined in Eq. (28), is the 
ratio between the characteristic mean flow velocity difference due to 
applied shear rate 7 and the root-mean-square value of the granular par- 
ticle translational fluctuation velocity from the mean. If there exists a small 
energy dissipation in the system, for example, with nearly elastic particles 
involved, then R t becomes small compared to 1. On the contrary, if there 
exists a large energy dissipation in the system, for example, with nearly 
inelastic particles involved or in a colloidal system where the interstitial 
fluid is very dense and viscous, R, becomes large compared to 1. In a 
system with large Rt, given shear rate 7, a translational fluctuation velocity 
acquired from a collision returns quickly to its mean flow velocity. 

If we expand Eq. (38) to third order in R,, we get the symmetric stress 
tensor; 

Pc=2--~mn2goTt rC2th(~.~+~g)-Rt (2ql + q2)(3~2 + g.~) 

- R ,  2 - ~  t/l + - - q 2  ~(3~2 + s (42) 
4 ( x / ~  

Also, from Eqs. (39) (41), we get, to second order in R,, 

1 2  2on2 3 o 1) ] 2oo 
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o- 2 { I 4 2Trl 
Zt=_~mnZg ~ T ~  2~ 8q1(q1--1)+4,2( ,2- -1)+~,2~t t  ] 

I 0_(2) 0 
Jr- R 2 3,1(.1 -- 1)~ -~- 67r.2(.2 -- 1) -- 4re Xf2.2(1 -- 2.2) R, ~ t  

+ 4~"2 \x/-~J + 2 KTtA j (44) 

2 2 2 
KTtJ 

{3~ ( 2 )  acoo 
+R, - 1  

(~CO0 /2 1._ T[ (_~_ 1) 2Trl 
+"2(~--l)2rC\Rt~/~ j 4 [  2 " 2  ''F q2 KTtJ 

+ ; [ 2 " 2 2 + " 2 ( K  - 1) 2Trl'~tKTtjj] (45) 

Assuming a steady and uniform bulk system, as in Eq. (24), we find that 
the mean spin angular velocity equation (9), translational kinetic energy 
equation (10), and rotational kinetic equation (11) are reduced to 

Z(ICO)=0 (46) 

7Pzy + Z, = 0 (47) 

zr = 0 ( 4 8 )  

Equation (46) is the conservation of the rate of spin angular momentum 
transfer; Eq. (47) is a balance law between the shear work and the rate of 
translational kinetic energy interchange. External shear work should be 
supplied to maintain the translational and rotational velocity fluctuations. 
Equation (48) tells us that the rate of spin rotational kinetic energy 
interchange is zero. 

If we insert Eq. (39) into (46), we get the general expression 

COo = �89 (49) 
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Thus, the mean spin angular velocity COo should always be equal to 
half of the shear rate ~ applied to the bulk system, independent of the 
magnitude of R,. 

Now, if we consider Eqs. (42), (44), and (45) to first order in R t and 
insert Eqs. (47) and (48), we get 

Tr q2 
Tt l i t~2K 1 

(5o) 

2 (2v#,(1 - v/,) + r#2(1 - v#2 ) - v # ~ ( K -  ~2).)1/2 
R ,  

t 2v#1 + r#2 ) (51) 

Equations (49) and (50) are the same as in the 3D case, but the expression 
for R, in Eq. (51) shows only a small difference. (2) 

From Eq. (42), we get 

S =  ~ Pj'= - 2  ( x / ~ q  1 3 t / 1  + q2 R, (52) 

Now let us turn to the other extreme, i.e., the large-R, solution. From 
Eq. (38), we get, in the limit R,-+ 0% the symmetric stress tensor, 

_ _ / ' [ ' 2 2  2 [/1 l(yJ3-}-ZZ)- (3~ ~ 1-~-~/~2) (yz-~ zy) ] (53) P c - "~ mn a go R, T, 

This expression tells us that the normal stress and the shear stress are 
proportional to the square of the shear rate, which is the same as Bagnold's 
experiment (s) on wax spheres suspended in a glycerine-water-alcohol 
mixture and sheared in a coaxial cylindrical rheometer. The ratio of normal 
stress to shear stress S is 

(8/3~)r/1 + (1/3~)t/2 
S - (54) 

?/1 

From Eq. (40), we get in the limit R, ~ 0% 

T 2 [-3/~\1/2 4 
+~Vlz(r la--  

R2 + 2~I~ ( KT,  J J + 2 . 2 ( 1 _ 2 . 2 ) 7  2:rr' ] 

1) 

(55) 
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Also, from Eq. (41), 

~, ~. ~2 ~ - 1  

1 / / 2 ) ( 1  R 2 + 2 K  - 1  +//2(1--K 
\ z  

1 2 2 --~e,-~ K 1. 2n2  
TI21K t 

(56) 

3. COMPUTER S IMULATIONAL RESULTS 

We considered N identical circular disks which are Characterized by a 
coefficient of restitution e and a surface roughness coefficient fl defined in 
Eqs. (30) and (31). The granular dynamics is quite similar in method to 
molecular dynamics. However, there is one great difference. In molecular 
dynamics, to simulate a shearing system, we need some special techniques 
such as the velocity rescaling to keep the system at constant temperature. 
On the contrary, there is no need of an artificial thermostat to maintain 
constant temperature of the system in granular dynamics. To see the bulk 
properties of the simple shear flow, we adopt the usual Lees-Edwards peri- 
odic boundary condition36) The overlapping hard-sphere method was used 
to reduce the computer time. This was originally used for a hard-sphere 
potential with an attractive potential tail37) All the particle positions are 
displaced during a fixed time interval. There exist inevitably overlapping 
pairs which should not be allowed due to the hardness of the granular 
particles. The overlapping of particle pairs should be resolved according to 
the rules of collision through Eqs. (32) (35). In this way we can generate 
the positions and velocities of the particles. More details can be found in 
refs. 7 and 8. 

We found that the properties of the nonequilibrium steady state are 
independent of the initial conditions of the granular dynamics. This steady 
state is attained after as few as 300 collisions per particle by the balance 
between the driving shear stress and the dissipative collisions through 
inelasticity and surface roughness. Also, as far as bulk properties are con- 
cerned, there are only slight changes in system properties when we take the 
number of granular particles N greater than 100. The averages are 'taken 

Table I. Translational Granular  Tempera ture  T t 

versus Shear Rate y at v=0.5,  e= l~=0 .9  

7 0.1 0.5 1.0 5.0 10.0 

T t 0.025 0.57 2.24 55.10 221.78 
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Table II. Translational Granular Temperature T t 

versus Volume Fraction v at y = 0 . 5 ,  e = 1 3 = 0 . 9  

157 

v 0.2 0.3 0.4 0.5 0.6 0.7 

T~ 2.27 1.01 0.69 0.57 0.48 0.44 

over a further 500 collisions per particle after the establishment of the 
steady state. The number of granular particles in our simulations is taken 
as N =  200. To express all the quantities in reduced units, the mass of a 
granular particle m, the diameter of a granular particle a, and an 
appropriate acceleration constant a are taken as the corresponding units. 

The simulational value of the mean spin angular velocity co o is, of 
course, half of the shear rate ~, as predicted by Eq. (49). This attainment 
reflects one of the typical properties of the nonequilibrium steady state of 
a granular bulk system. 

The granular temperatures are proportional  to the square of the shear 
rate ~ as shown in Table I. This is consistent with the granular temperature 
generation mechanism due to external shear stress. (9) In Table II  we show 
the granular temperature variation with respect to volume fraction v at 
fixed shear rate ~ =0.5  with e = / 3 = 0 . 9 .  In Table III  we also show the 
granular temperature variation with respect to the coefficient of restitu- 
tion e. As expected, the granular temperature becomes small as the volume 
fraction v becomes large and the coefficient of restitution e small. This is 
consistent with our physical intuition. The configurational part  of 
compressibility factor y is calculated by 

PA 
y = - -  (57) 

NT, 

where P is the trace of the pressure tensor P, and A is a 2D volume. The 
configurational part  of the stress is due to the transport  of the linear 
momentum by interparticle collisions, at which the linear momentum is 

Tablel l l .  Translational Granular Temperature T t 

versus Coeff ic ient  of Restitution e at v = y = O . 5 ,  13=0.9 

e 0.95 0.90 0.85 0.80 0.75 

T, 0.92 0.57 0.37 0.27 0.22 
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exchanged between the two colliding particles according to (32)-(35). The 
theoretical prediction is obtained from Eq. (42); 

y = 2tll vgo(a; v) (58) 

Here we take go as the 2D equivalent form of the Carnahan-Starling 
equation for the pair correlation function, (1~ 

1 2 l + g v  
go(O'; v) - (1 - v) ~ (59) 

As shown in Fig. 1, there is an excellent agreement between the theoretical 
predictions and the simulational results. The ratio Tr/Tt is shown in Fig. 
2 for both K =  0.5 and K =  1.0, together with the simulational results for 
K =  0.5. When/3 = - 1.0 from Eq. (34), Tr does not change from its initial 
value. However, near /3~ -1 .0 ,  Tr/Tt~O because there is a very small 
chance of transforming external shear work into rotational kinetic energy 
of the granular particle. In theory, as/3 --* 1.0, Tr ~ Tt due to the equiparti- 
tion of fluctuation kinetic energy between translational and spin rotational 
modes of motion. However, there is a significant discrepancy between the 
theoretical and simulational results. This is mainly due to the neglect of the 
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Fig. 2. 
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Fig. 4. 

1% 

0 . 6 - -  

0 .55 - -  

0 . 5 -  

0 .45  - 

0 . 4 -  

0 . 3 5 -  

0 . 3 -  

0 . 2 5 -  

0 . 2 -  

0 . 1 5 -  

0.1 

0 . 0  
I I I I I I I I 

0.1 0 .2  0 . 3  0 . 4  0 . 5  0 . 6  0 .7  0 . 8  

v o l u m e  f r a c t i o n  

Dimensionless parameter R t v e r s u s  volume fraction v, showing an asymptotic 
behavior at large v. 

0 . 8 -  

0 . 8 5 -  

0 . 8 -  

0 . 7 5  - 

0 . 7 -  

R t  0 . 6 5 -  

0 . 6 -  

0 .55  - 

0 . 5 -  

0 . 4 5 -  

0 . 4  

. /  . . . . . . . . . . . .  "%. 

. / . ,  ..... %,,,, 

o 

I I I I 
-1.0 - 0 . 5  0.0 0.5 1.0 

r o u g h n e s s  coef  f.  

Fig. 5. Dimensionless parameter R, versus coefficient of surface roughness /L (--) e=0.9, 
K=0.5; ( . . . )  e=0.9, K=  1.0; ( - - )  e.-0.8, K=0.5; (- . -)  e=0.8, K=  1.0; ( I )  e=0.9, K=0.5, 
simulation. 



Kinetic Theory of Granular Shear Flow 161 

second-order effect of Rt in Eq. (50). The disk with K =  1 corresponds to 
a 2D ring, i.e., the masses are concentrated just on the perimeter. When K 
becomes large, there are more chances to have a large fluctuation of spin 
rotational velocity. The stress ratio S in Eq. (52) is shown in Fig. 3. We 
found that the simulated values are about 3 4  times larger than the 
theoretical values, but that, as shown in Fig. 3, if reduced to a factor of 3.2, 
the trends with respect to surface roughness coefficient/~ are quite similar. 
When K becomes large or e becomes smaller, S is increased accordingly. 
This is due to the fact that the tangential velocity change is larger 
compared to the normal velocity change as in Eq. (34). 

The simulational dissipative parameter Rt, shown in Fig. 4, seems to 
have an asymptotic behavior as v increases. However, we could not extend 
the results to the further dense region due to the very short collision time 
and/or incomplete resolution of overlapping pairs. In fact, the maximum 
limit of the volume fraction at which the system can be sheared is around 
Vm = 0.79 for two-dimensional monosized disks. 

In Fig. 5 we show Rt with respect to //. The value of Rt becomes 
smaller at large 1/~[. The simulational values are quite similar to the 
theoretical values at low I/~l, but a small discrepancy occurs at large I/~l. 
The value of R t becomes larger as e becomes smaller and K larger. One 
interesting result is that crossover occurs between the K =  0.5 and K =  1.0 
cases near /~ = 0.5. At large /~, it takes a little more time to return to the 
mean translational velocity, as K becomes smaller. The simulational values 
of R, are, unexpectedly, rather large even at e--0.9. The underlying 
assumption of the theoretical formulation is that R~ should be small 
compared to 1. However, the predictions of R~ are quite comparable with 
the simulational results. 

4. C O N C L U S I O N  

We have derived general constitutive equations for a two-dimensional 
granular system under simple shear flow, from which we have obtained the 
expressions for the small- and large-Rt limits, respectively. We could not 
compare the values for the large-Rt limit with the simulational results, 
which could not be obtained at this point. 

In the small-Rt limit, we compared the theoretical prediction with the 
simulational results. The granular temperatures with respect to the shear 
rate 7 and volume fraction v are consistent with physical intuition. The 
simulated compressibility factor y is quite comparable to the theoretical 
value. The mean spin angular velocity e~ o is quite close to half of the shear 
strain rate 7 as predicted. The ratio Tr/Tt is quite comparable at small I/~f, 
but there are some discrepancies at large I/~[. The simulated value for the 
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stress ratio S is about 3-4 times larger than the theoretical value, but the 
trends with respect to fl are quite similar. The simulated value of Rt with 
respect to the volume fraction v shows an asymptotic behavior at large v. 
The simulational value of R, is quite comparable to the theoretical result. 

There still exist many discrepancies between simulational results and 
the theoretical results, which should be examined further. These discrepan- 
cies seem to be mainly due to the assumptions of a local Maxwellian 
velocity distribution and of molecular chaos. 
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